Działanie instalacji fotowoltaicznej w pigułce.

Działanie instalacji fotowoltaicznej w pigułce.

Fotowoltaika to proces wytwarzania energii elektrycznej z darmowego promieniowania słonecznego. Obecnie rozwój fotowoltaiki następuję bardzo dynamicznie, a słońce stanowi trzecie co do wielkości źródło energii odnawialnej na świecie. Energia słoneczna może być wykorzystywana do zasilania niewielkich urządzeń przenośnych, takich jak kalkulatory czy zegarki, lamp i sygnalizacji drogowych oraz parkometrów, a także do ogrzewania pomieszczeń oraz podgrzewania wody w budynkach mieszkalnych. Każdy z nas może czerpać korzyści z naturalnego źródła energii także do zasilenia swoich urządzeń domowych wychodząc naprzeciw postępującej degradacji środowiska naturalnego oraz stale rosnącym cenom prądu.

Wiemy już, że w zależności od rodzaju półprzewodnika z jakiego są zbudowane, panele fotowoltaiczne mogą w bardziej lub mniej efektywny sposób przekształcać energię słoneczną w energię elektryczną. Znamy też parametry, na podstawie których możemy zweryfikować, który rodzaj paneli będzie bardziej efektywny. Ale jak dochodzi w nich do zjawiska fotowoltaicznego i na czym ono polega?

Aby zrozumieć lepiej efekt fotowoltaiczny omówmy najpierw budowę ogniwa fotowoltaicznego. Ogniwo składa się z dwóch warstw półprzewodnika. Jedna z nich zbudowana jest z atomów posiadających większą liczbę elektronów na ostatniej z powłok, przez co charakteryzuje się ładunkiem ujemnym (warstwa typu n). Druga zaś złożona jest z atomów posiadających puste miejsca po elektronach tzw. dziury (warstwa typu p). Warstwa ta charakteryzuje się dodatnim ładunkiem elektrycznym. Na granicy tych dwóch warstw atomy z warstwy typu n „oddają” swoje dodatkowe elektrony atomom z warstwy typu p zapełniając ich dziury. W ten sposób powstaje złącze p-n składające się z atomów o obojętnym ładunku elektrycznym.

Produkcja energii elektrycznej w ogniwie fotowoltaicznym ma miejsce tylko wtedy, gdy pada na nie światło słoneczne. Promienie należy przy tym postrzegać, jako strumień cząsteczek (tzw. fotonów) posiadający porcję energii. Energia ta docierając do ogniwa zostaje pochłonięta przez elektrony znajdujące się na ostatniej z powłok elektronowych atomów krzemu na złączu p-n. Elektrony na skutek dostarczonej energii zostają „wybite” z powłok i krążą swobodnie po materiale półprzewodnikowym w warstwie typu n. Jednocześnie w warstwie typu p zwiększa się liczba atomów z dziurami. Prowadzi to do powstania różnicy ładunków na obydwu warstwach tzw. napięcia. Swobodne elektrony z warstwy n dążą do ponownego zapełnienia dziur w atomach znajdujących się w warstwie typu p. Jednak złącze p-n, pełniące rolę „izolatora”, skutecznie im to uniemożliwia. Przyłączenie odbiornika do ogniwa fotowoltaicznego, a tym samym zamknięcie obwodu elektrycznego spowoduje przepływ wolnych elektronów w kierunku atomów z ładunkiem dodatnim. Ten uporządkowany ruch elektronów to prąd! Jego natężenie jest proporcjonalne do natężenia promieniowania słonecznego, a także powierzchni ogniwa fotowoltaicznego.